Energy Partition of the Flare-CME Events

Ryoma Matsuura Advisor: Dr. Chunming Zhu

Background

Questions to ask:

- How much energy is released from the flares?
 - Corona v.s. Transition region
- How much energy is released with the CMEs?
 - Kinetic v.s. Potential
- Can we learn more about the how the magnetic energy is converted into other forms of energy?

Objective

Improving/ Building on previous studies:

- Estimation of flare energy \rightarrow improved methods
- Event dates \rightarrow newer events in solar cycle 24
- Sample size \rightarrow look at more events

Methods: CME

- Mass Images from STEREO

Methods: Flares

- EBTEL (enthalpy-based thermal evolution of loops) Model
- Images from SDO

Methods: Flares

- Glambda: Adjusts the slow-heating
- SclO: Scaling factor for heating rate
- Scl1: Scaling factor for transition region radiation

Methods: Analysis

- Analysis of the three parameters
 - Their relation to the GOES flare classes
- Analysis of the energy partition
 - Flare energy v.s. CME energy
 - Radiation from corona v.s. transition region
 - Kinetic energy v.s. Potential energy

Results

Event	GOES Class	Glambda	Scl0	Scl1	Correlation	$Q [{\rm ergs}]$
2010/08/03	M1.0	0.8	1.5	0.77	0.88	8.56×10^{30}
2011/06/21	C7.7	0.21	2.5	0.65	0.80	9.03×10^{30}
2011/08/02	M1.4	0.75	3.3	0.8	0.78	6.57×10^{30}
2011/08/03	M6.0	1.7	2.7	1.1	0.96	2.97×10^{31}
2011/08/04	M9.3	0.26	2.1	1.2	0.96	2.02×10^{31}
2012/03/09	M6.3	0.7	2.5	1.2	0.94	3.31×10^{31}
2012/03/10	M8.4	1.09	2.75	1.3	0.88	6.08×10^{31}
2012/06/14	M1.9	1.05	3.6	0.8	0.85	1.19×10^{31}
2012/07/12	X1.4	1.6	3.6	1.3	0.75	9.56×10^{31}
2013/04/11	M6.5	0.8	3.7	1.1	0.89	2.41×10^{31}

	Mean	Standard dev.
Q/E_{cme}	0.77	0.67
R_c/R_{tr}	0.31	0.16
E_k/E_p	4.84	9.93

Conclusion

Main Findings

- Energy partition for 10 events
- A few strong correlations
- Some quantities having a small range

Future work / Improvements

- Possibly improving the flare estimation with a better method
- Comparing different parameters/ratios with more than just GOES flare class
- Working on more events to increase sample size

Thank you!

Sources

Images:

https://www.swpc.noaa.gov/news/solar-cycle-24-status-and-solar-cycle-25-upcoming-forecast https://www.nasa.gov/mission_pages/stereo/images/index.html https://www.nasa.gov/mission_pages/sdo/images/index.html Reference

https://iopscience.iop.org/article/10.1088/0004-637X/759/1/71/pdf

